پیش بینی پارامترهای کیفی (NO3 ,DO) رودخانه کرج با استفاده از مدل های ANN، MLR و تلفیق شبکه عصبی-موجکی بر پایه نویززدایی
نویسندگان
چکیده مقاله:
Background & Objectives: The prediction and quality control of the Karaj River water, as one of the important needed water supply sources of Tehran, possesses great importance. In this study, performance of artificial neural network (ANN), combined wavelet-neural network (WANN), and multi linear regression (MLR) models were evaluated to predict next month nitrate and dissolved oxygen of “Pole Khab” station located in Karaj River. Materials and Methods: A statistical period of 11 years was used for the input of the models. In combined WANN model, the real monthly-observed time series of river discharge (Q) and the quality parameters (nitrate and dissolved oxygen) were analyzed using wavelet analyzer. Then, their completely effective time series were used as ANN input. In addition, the ability of all three models were investigated in order to predict the peak points of time-series that have great importance. The capability of the models was evaluated by coefficient of efficiency (E) and the root mean square error (RMSE). Results: The research findings indicated that the accuracy and the ability of hybrid model of wavelet neural network with the attitude of elimniations of time series noise had beeb better than the other two modes so that hybrid model of Wavelet artificial neural network wase able the improve the rate of RMSE for Nitrate ions in comparison with neural network and multiple linear regression models respectively, amounting to 35.6% and 75.92%, for Dissolved Oxygen ion as much as 40.57% and 60.13%. Conclusion: owing of the high capability wavelet neural network and the elimination of the time series noises in the prediction of quality parameters of river’s water, this model can be convenient and fast way to be proposed for management of water quality resources and assursnce from water quality monitoring results and reduction its costs.
منابع مشابه
پیش بینی پارامترهای کیفی (no۳ ,do) رودخانه کرج با استفاده از مدل های ann، mlr و تلفیق شبکه عصبی-موجکی بر پایه نویززدایی
زمینه و هدف: پیش بینی و کنترل کیفیت آب رودخانه کرج، به عنوان یکی از مهم ترین منابع تامین کننده آب مورد نیاز شهر تهران، از اهمیت بسزایی برخوردار است. در این تحقیق، عملکرد مدل های شبکه عصبی (ann)، مدل ترکیبی شبکه عصبی – موجک (wann) و رگرسیون خطی چند متغیره (mlr)، برای پیش بینی یک ماه آینده یون نیترات و اکسیژن محلول ایستگاه پل خواب واقع در رودخانه کرج، مورد ارزیابی قرار گرفت. روش بررسی: از یک دوره...
متن کاملپیش¬بینی جریان روزانه با استفاده از شبکه¬های عصبی مصنوعی و عصبی- موجکی (مطالعه موردی: رودخانه باراندوزچای)
پیشبینی دقیق جریان در رودخانهها یکی از مهمترین ارکان در مدیریت منابع آبهای سطحی به ویژه جهت اتخاذ تدابیر مناسب در مواقع سیلاب و بروز خشکسالیها است. به دلیل اهمیت پیشبینی جریان رودخانه، در این تحقیق جریان روزانه رودخانهی باراندوزچای در دو ایستگاه بیبکران و دیزج طی یک دورهی آماری 20 ساله با استفاده از مدل عصبی- موجکی (WNN) که تلفیق آنالیز موجک و شبکه عصبی مصنوعی (ANN) میباشد، پیشبینی گرد...
متن کاملبهبود نتایج پیش بینی BOD رودخانه ها بر پایه نویززدایی با مقایسه مدل های موجک عصبی، برنامه ریزی ژنتیک، شبکه عصبی و رگرسیون خطی (مطالعه موردی: ایستگاه خروجی سد کرج)
در این مطالعه مدلهای شبکه عصبی مصنوعی، رگرسیون خطی چند متغیره، برنامهریزی ژنتیک و ترکیب شبکه عصبی- موجک برای پیش بینی اکسیژنخواهی بیوشیمیایی ماهانه آب (BOD) در ایستگاه خروجی سد کرج بررسی شد و تأثیر پیشپردازش دادهها روی عملکرد مدلها بوسیله تجزیه موجک مورد تحقیق قرار گرفت. به این منظور در مدل پیشنهادی اول، سری زمانی BOD مشاهداتی بوسیله توابع تبدیل مختلف در سطوح مختلفی به زیر سریها تجزیه شد...
متن کاملپیش بینی خشکسالی با استفاده از الگوریتم ژنتیک و مدل ترکیبی شبکه عصبی- موجکی
خشکسالی به عنوان یکی از مهم ترین بلایای طبیعی است که ممکن است در هر رژیم آب و هوایی اتفاق بیفتد. از آنجا که وقوع خشکسالی اجتناب ناپذیر است، بنابراین شناخت آن به منظور مدیریت بهینه منابع آب، از اهمیت بسزایی برخوردار است. از مؤثرترین عوامل در تدوین طرحهای مقابله با خشکسالی و مدیریت آن، طراحی سیستم های پیش بینی خشکسالی است که بتوان اثرات مخرب ناشی از آن را به حداقل رساند. به این منظور در این تحقیق...
متن کاملمدل سازی پارامترهای کیفی (bod, do) رودخانه ها با استفاده از مدل تلفیقی شبکه عصبی مصنوعی و تئوری موجک
کیفیت آب¬های سطحی یک عامل موثر در سلامتی انسان و سیستم¬های زیست محیطی، به خصوص در مناطق شهری می¬باشد. چون رودخانه¬ها با عبور از شهر¬ها بسیاری از آلاینده¬های رها شده از فاضلاب¬های خانگی و صنعتی و پساب¬های کشاورزی را دریافت می¬کنند. بنابراین، وجود اطلاعات قابل اعتماد در مورد روند کیفیت آب، برای مدیریت آب موثر است. در مناطق نیمه¬خشک مانند ایران که با مشکلات کمبود آب به ویژه در مناطق پرجمعیت (به عل...
15 صفحه اولپیش بینی دمای کمینه ایستگاه کرج با استفاده از داده های شاخص های پیوند از دور و شبکه عصبی مصنوعی
توجه علمی به مخاطرات محیطی که آسیب پذیری بسیاری از کشورهای دنیا را به دنبال دارد، آغازی نسبتاً تازه دارد. یکی از این خطرها یخبندانها می باشند که سبب زیانهای عظیمی در زمینه های کشاورزی، حمل و نقل، انرژی ، زیست محیطی و غیره شده است. جهت جلوگیری از خطرات ناشی از آنها استفاده از روشهای پیش بینی امکان پیش آگاهی از حداقل دما و رخداد پدیده یخبندان را فراهم ساخته تا مسئولان در جهت جلوگیری از آن...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 7 شماره None
صفحات 511- 530
تاریخ انتشار 2015-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023